§ 4.4 The Magnetic Moment of the Electron

Recall the Dirac equation in the presence of the electromagnetic field:

$$
\left(i \gamma^{\mu} D_{\mu}-m\right) \psi=0
$$

\rightarrow acting on with ($i \gamma^{m} D_{m}+m$) gives

$$
-\left(\gamma^{\mu} \gamma^{\nu} D_{\mu} D_{\nu}+m^{2}\right) \psi=0
$$

We have
$\gamma^{\mu} \gamma^{v} D_{\mu} D_{\nu}$

$$
\begin{aligned}
& =\frac{1}{2}\left(\left\{\gamma^{\mu}, \gamma^{\nu}\right\}+\left[\gamma^{m}, r^{\nu}\right]\right) D_{\mu} D_{\nu} \\
& =D_{\mu} D^{m}-i \sigma^{\mu \nu} D_{\mu} D_{\nu}
\end{aligned}
$$

and

$$
\begin{align*}
& i \sigma^{\mu \nu} D_{\mu} D_{\nu}=\left(\frac{i}{2}\right) \sigma^{m \nu}\left[D_{\mu}, D_{\nu}\right] \\
&=\frac{e}{2} \sigma^{\mu \nu} F_{\mu \nu} \\
& \rightarrow\left(D_{\mu} D^{\mu}-\frac{e}{2} \sigma^{\mu \nu} F_{\mu \nu}+m^{2}\right) \psi=0 \tag{1}
\end{align*}
$$

Now consider a weak constant magnetic field pointing in the 3 -direction:

$$
\begin{aligned}
& \quad A_{0}=0, \quad A_{1}=-\frac{1}{2} B x^{2}, \quad A_{2}=\frac{1}{2} B x^{1} \\
& \rightarrow \\
& F_{12}=\partial_{1} A_{2}-\partial_{2} A_{1}
\end{aligned}
$$

then

$$
\begin{aligned}
&\left(D_{i}\right)^{2}=\left(\partial_{i}\right)^{2}-i e\left(\partial_{i} A_{i}+A_{i} \partial_{i}\right)+G\left(A_{i}^{2}\right) \\
&=\left(\partial_{i}\right)^{2}-2 \frac{i e}{2} B\left(x^{\prime} \partial_{2}-x^{2} \partial_{1}\right)+O\left(A_{i}^{2}\right) \\
&=\vec{\nabla}^{2}-e \vec{B} \cdot \stackrel{\vec{x} \times \vec{p}}{\times}+O\left(A_{i}^{2}\right) \\
& \text { here we used }=\vec{L}
\end{aligned}
$$

where we used

$$
\begin{aligned}
& \text { we used } \\
& \partial_{i} A_{i}+A_{i} \partial_{i}=\left(\partial_{i} A_{i}\right)+2 A_{i} \partial_{i}=2 A_{i} \partial_{i}
\end{aligned}
$$

Next, we write $\mathcal{H}=\binom{\phi}{x}$ in Dirac basis \longrightarrow in non-relativistic limit $x \ll \phi$ recall

$$
\sigma^{i j}=\varepsilon^{i j k}\left(\begin{array}{cc}
\sigma^{k} & 0 \\
0 & \sigma^{k}
\end{array}\right)
$$

Thus $\frac{e}{2} \sigma^{n \nu} F_{\mu \nu}$ acting an ϕ gives

$$
\frac{e}{2} \sigma^{3}\left(F_{12}-F_{21}\right)=\frac{e}{2} 2 \sigma^{3} B=2 e \vec{B} \cdot \vec{S}
$$

since $\vec{S}=\frac{\vec{\sigma}}{2}$.
We can write $\phi=e^{-i m t} \psi$ where

4 oscillates much more slowly than $e^{-i m t}$

$$
\rightarrow\left(\partial_{0}^{2}+m^{\partial}\right) e^{-i m t} \psi \sim e^{-i m t}\left(-2 i m \frac{\partial}{\partial t} \psi\right)
$$

Altogether, we get

$$
\begin{equation*}
\left[-2 i m \frac{\partial}{\partial t}-\vec{\nabla}^{2}-e \vec{B} \cdot(\vec{L}+2 \vec{S})\right] \psi=0 \tag{2}
\end{equation*}
$$

Dirac eq. tells us that a unit of "spin angular momentum" interacts twice as much as unit of "orbital angular mom."
\rightarrow confirmed experimentally!
Anothe approach: Gordon decomp. (Homework 4):

$$
\bar{u}\left(p^{\prime}\right) \gamma^{m} u(p)=\bar{u}\left(p^{\prime}\right)\left[\frac{\left(p^{\prime}+p\right)^{\mu}}{2 m}+\frac{\left.i \sigma^{\mu v}\left(p^{\prime}-p\right)_{\nu}\right] u(p)}{2 m}\right]
$$

\rightarrow interaction with electromagnetic field

$$
\bar{u}\left(p^{\prime}\right) \gamma^{\mu} u(p) A_{\mu}\left(p^{\prime}-p\right)
$$

contains a magnetic moment component

The anomalous magnetic moment
Experimental magnetic moment is larger than the one calculated by Dirac by a factor 1.00118 ± 0.00003
Let us denote an electron state by

\rightarrow by Lorentz invariance and current conservation:

$$
\begin{aligned}
& \left\langle p^{\prime}, s^{\prime}\right| \gamma^{m}(0)|p, s\rangle \\
= & \bar{u}\left(p^{\prime}, s^{\prime}\right)\left[\gamma^{m} F_{1}\left(q^{2}\right)+\frac{i \sigma^{m v} q_{2}}{2 m} F_{2}\left(q^{2}\right)\right] u(p, s)
\end{aligned}
$$

where $q:=p^{\prime}-p$
$F_{1}\left(q^{2}\right)$ and $F_{2}\left(q^{2}\right)$ are Known as form factors.
\rightarrow to leading order in q. (3) becomes

$$
\bar{u}\left(p^{\prime}, s^{\prime}\right)\left\{\frac{\left(p^{\prime}+p\right)^{m}}{2 m} F_{1}(0)+\frac{i \sigma^{m v} q_{2}}{2 m}\left[F_{1}(0)+F_{2}(0)\right]\right\} u(p, s)
$$

by Gordon decomposition.
first term: determines electric charge
\rightarrow set to $F_{1}(0)=1$
second term: $\frac{i \sigma^{m v} q^{2}}{2 m}\left[1+F_{2}(0)\right]$
\rightarrow magnetic moment of electron is shifted by factor $1+F_{2}(0)$

Schwinger's calculation
Let us now calculate $F_{2}(0)$ to order $\alpha=\frac{e^{2}}{4 \pi}$ \rightarrow Feynman diagrams:

(d)

\rightarrow except for figure (b), all diagrams are proportional to $\bar{u}\left(p^{\prime}, s^{\prime}\right) \gamma^{m} u(p, s)$
\rightarrow contribute to $F_{1}\left(q^{2}\right)$
(b) contributes to $F_{2}\left(q^{2}\right)$

Write $(a)+(b)=\bar{u}\left(\gamma^{m}+\Gamma^{m}\right) u$
\rightarrow applying Feynman rules, find

$$
\Gamma^{\mu}=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{-i}{k^{2}}\left(i e \gamma^{2} \frac{i}{\not p^{\prime}+k-m} \gamma^{\mu} \frac{i}{\not P+K-m} i e \gamma_{2}\right)
$$

Simplifying, gives

$$
T^{m}=-i e^{2} \int\left[\frac{d^{4} k}{(1-q)^{4}}\right]\left(\frac{N^{m}}{D}\right)
$$

where

$$
\begin{equation*}
N^{m}=\gamma^{\nu}\left(p^{\prime}+K+m\right) \gamma^{m}(\not p+K-m) \gamma_{\nu} \tag{4}
\end{equation*}
$$

and

$$
\frac{1}{D}=\frac{1}{\left(\phi^{\prime}+k\right)^{2}-m^{2}} \frac{1}{(p+k)^{2}-m^{2}} \frac{1}{k^{2}}
$$

Using the identity

$$
\frac{1}{x y z}=2 \iint_{x} d \alpha d \beta \frac{1}{[z+\alpha(x-z)+\beta(y-z)]^{3}}
$$

where the integration domain is the triangle $0 \leqslant \beta \leqslant 1-\alpha, \quad 0 \leqslant \alpha \leqslant 1$ in $\alpha-\beta$ plane, gives

$$
\frac{1}{D}=2 \int d \alpha d \beta \frac{1}{D}
$$

with

$$
\begin{aligned}
D & =\left[k^{2}+2 k\left(\alpha p^{\prime}+\beta p\right)\right]^{3} \\
& =\left[l^{2}-(\alpha+\beta)^{2} m^{2}\right]^{3}+G\left(q^{2}\right)
\end{aligned}
$$

where we defined $k=l-\left(\alpha p^{\prime}-\beta p\right)$
From Gordon decomposition, we know

$$
\begin{aligned}
& \text { that } \\
& \frac{\bar{u}}{}\left(\gamma^{m}+\Gamma^{m}\right) u \\
& =\bar{u}\left\{\gamma^{m}\left[F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right)\right]-\frac{1}{2 m}\left(p^{\prime}+p\right)^{\mu} F_{2}\left(q^{2}\right)\right\} u \quad \text { (5) }
\end{aligned}
$$

\rightarrow to extract $F_{2}(0)$, we can discard any term proportional to γ^{m} rewriting (4) in terms of l, gives

$$
\begin{equation*}
N^{m}=\gamma^{2}\left[l+\not X^{\prime}+m\right] \gamma^{m}[\ell+\not P+m] \gamma_{2} \tag{6}
\end{equation*}
$$

with $\not^{\prime m}:=(1-\alpha) p^{\prime m}-\beta p^{m}$
and $P^{m}=(1-\beta) p^{m}-\alpha p^{\prime n}$
Perform the following steps in (6):

1) the m^{2} term: a γ^{m} term \rightarrow discard
2) the m terms: organize by powers of l
\rightarrow term linear in ℓ vanishes
\rightarrow term independent of l :

$$
\begin{aligned}
& m\left(\gamma^{\nu} \not P^{\prime} \gamma^{m} \gamma_{\nu}+\gamma^{\nu} \gamma^{m} \not P^{\prime} \gamma_{\nu}\right) \\
= & 4 m\left[(1-2 \alpha) p^{\prime m}+(1-2 \beta) p^{n}\right] \\
\rightarrow & 4 m(1-\alpha-\beta)\left(p^{\prime}+p\right)^{m}
\end{aligned}
$$

(used that D is symmetric in $\alpha \omega \beta$)
3) m° term: of order l^{2}
\rightarrow by Lorentz invariance replace

$$
\int \frac{d^{4} l}{(2 \pi)^{4}} l^{\sigma} l^{\tau} \rightarrow \frac{1}{\varphi} \int \frac{d^{4} l}{(2 \pi)^{4}} \eta^{\sigma} l^{2}
$$

\rightarrow discard γ^{μ} term and linear terms in l leaving

$$
r^{2} \not P^{\prime} r^{m} \not P r_{2}=-2 \not P r^{m} \not P^{\prime}
$$

$$
\rightarrow-2[(1-\beta) \not p-\alpha m] \gamma^{m}\left[(1-\alpha) p^{\prime}-\beta m\right]
$$

Putting everything together, we find

$$
N^{n} \rightarrow 2 m\left(p^{\prime}+p\right)^{n}(\alpha+\beta)(1-\alpha-\beta)
$$

Performing the integral $\int\left[\frac{d^{4} \ell}{(2 \pi)^{4}}\right] \frac{1}{D}$, we get

$$
\begin{aligned}
T^{\mu} & =-2 i e^{2} \int d \alpha d \beta\left(\frac{-i}{32 \pi^{2}}\right) \frac{1}{(\alpha+s)^{2} m^{2}} N^{\mu} \\
& =-\frac{e^{2}}{8 \pi^{2}} \frac{1}{2 m}\left(p^{\prime}+p\right)^{\mu}
\end{aligned}
$$

Finally from (5):

$$
F_{2}(0)=\frac{e^{2}}{8 \pi^{2}}=\frac{\alpha}{2 \pi}
$$

